# **HUMAN-INDUCED EARTHQUAKES – GEOGRAPHY**

NEWS: Recent studies and seismic data have highlighted the increasing frequency of human-induced earthquakes in India, with significant linkages to groundwater extraction, reservoir loading, and infrastructural activities in seismically vulnerable regions.

#### WHAT'S IN THE NEWS?

# I. Concept and Mechanism of Human-Induced Earthquakes (HIEs)

#### • Definition:

• Human-Induced Earthquakes (HIEs) are seismic events that are directly or indirectly triggered by human activities altering the stress distribution in the Earth's crust.

### Global Trend:

- Over **700 HIE events** have been scientifically documented worldwide in the past **150 years** (*Seismological Research Letters*, 2017).
- Most events were of low to moderate magnitude but have had considerable local impacts.



# • Underlying Mechanisms:

- Human actions cause **abrupt or gradual changes in subsurface pressure**, **fluid movement**, or **mass loading**, which disturb fault equilibrium.
- These disturbances may **reactivate pre-existing faults**, leading to earthquakes.

# II. India-Specific Observations and Case Studies

- 1. Koyna Earthquake (1967), Maharashtra:
  - One of the **first confirmed cases** of reservoir-induced seismicity (RIS) globally.
  - Triggered by the filling of the **Koyna Dam** reservoir.
  - Magnitude: 6.3; Casualties: Over 180 people killed; Impact: Thousands of structures destroyed.

# • 2. Delhi-NCR and Groundwater Extraction (2003–2012):

- A 2021 study (*Scientific Reports*) linked shallow quakes to extensive **groundwater depletion**.
- Quakes were concentrated in areas where the **water table dropped sharply** during this period.
- After 2014, when groundwater levels began stabilizing, the **seismic frequency** declined.

# • 3. Mullaperiyar Dam, Kerala:

- Built in 1895, situated in a seismically active zone.
- Concerns stem from both **structural ageing** and **RIS potential**, given the dam's location on faulted rock beds.

# • 4. Palghar District, Maharashtra:

- Experienced clusters of tremors in 2018–2020.
- Suspected link with **fluid movements along faults**, possibly due to **subsurface** water stress or crustal adjustments.

### • 5. Sahyadri Range (Western Ghats):

- Episodes of seismic activity followed extreme rainfall events (e.g., 2019–2021).
- Suggests a link between rain-induced loading and fault reactivation.

# III. Anthropogenic Triggers of Earthquakes in India

- 1. Groundwater Over-Extraction:
  - Leads to **decline in pore pressure**, making rocks more prone to shifting.
  - Also increases **vertical stress** due to the reduced buoyant support.

• Particularly seen in north India, including **Delhi**, **Harvana**, and parts of **Rajasthan**.

### • 2. Reservoir-Induced Seismicity (RIS):

- Occurs due to the weight of stored water and water seepage into fault zones.
- Faults near large reservoirs may become **lubricated**, enabling slippage.
- Examples include **Koyna**, **Indira Sagar**, and concerns around **Tehri Dam** in Uttarakhand.

# • 3. Fracking and Hydrocarbon Extraction:

- India has 56 fracking sites across Gujarat, Rajasthan, Andhra Pradesh, Tamil Nadu, etc.
- High-pressure fluid injection can fracture rock layers, create new fault planes, and induce tremors.
- Studies suggest potential future risk as fracking expands without adequate regulation.

### • 4. Urban Construction in Seismic Zones:

- High-rise buildings and metro projects in places like **Delhi NCR**, **Dehradun**, and **Shillong** impose **concentrated loads** on already stressed fault zones.
- Lack of seismic compliance in construction worsens vulnerability.

# IV. Emerging Role of Climate Change in Seismicity

- 1. Glacial Melting and Isostatic Rebound:
  - Loss of glacial mass in regions like **Himalayas**, **Greenland**, and **Antarctica** reduces weight on tectonic plates.
  - This triggers isostatic uplift, changing stress fields deep within the crust.

#### • 2. Extreme Rainfall Events:

- Sudden heavy rainfall, such as in **Kerala (2018, 2019)** and the **Sahyadris**, adds surface weight.
- Water infiltrates into faults, **increasing pore pressure** and reducing rock friction.

### • 3. Drought-Induced Seismic Reactivation:

- Long-term droughts (e.g., California 2014) reduce groundwater, causing drying and contraction of crustal rocks.
- Leads to **fault adjustments** and earthquake risk.

#### V. Policy and Scientific Recommendations

#### A. Scientific and Technical Measures

• Expand Seismic Monitoring Network:

- Prioritize installation near dams, fracking fields, and urban seismic hotspots.
- Use **real-time sensors** to monitor fluid movement and crustal stress.
- Promote Earthquake Early Warning Systems (EEWS):
  - Pilot successful models from **Japan and California** in Indian metros.
  - Useful for even short lead-time alerts (10–30 seconds).

# **B.** Regulatory and Planning Reforms

- Dams and RIS Management:
  - Implement **gradual reservoir filling/emptying** strategies to prevent sudden stress changes.
  - Follow models like the **Hoover Dam** in the U.S.
- Fracking Controls:
  - Enforce seismic hazard mapping before approving new fracking leases.
  - Mandate **cutoff thresholds**—automatic halting of operations if tremors exceed a given magnitude.

#### C. Groundwater Governance

- Promote Managed Aquifer Recharge (MAR):
  - Use **check dams**, **percolation tanks**, and **urban recharge wells** to restore subsurface equilibrium.
- Link Groundwater Use with Hydrogeology:
  - Integrate recharge zones into urban planning, zoning regulations, and cropping patterns.

### **D. EIA and Infrastructure Policy Reforms**

- Update Environmental Impact Assessment (EIA) norms:
  - Mandate **seismic risk evaluation** for projects above a size threshold (e.g., large dams, metros, highways).
  - Require climate-linked seismic vulnerability assessment in EIAs.
- Urban Planning Reforms:
  - Enforce building codes (IS 1893) for seismic resistance.
  - Prioritize risk-sensitive land use planning in zones like Himalayan towns and Mumbai suburbs.

Source: <a href="https://www.thehindu.com/sci-tech/science/india-human-induced-earthquakes-water-energy-demand-risk/article69837667.ece">https://www.thehindu.com/sci-tech/science/india-human-induced-earthquakes-water-energy-demand-risk/article69837667.ece</a>