NUCLEAR MEDICINE FOR THYROID DISORDERS - SCIENCE & TECHNOLOGY

NEWS: Nuclear medicine has emerged as a safe and precise method for diagnosing and treating thyroid disorders, especially **hyperthyroidism** and **thyroid cancers**.

WHAT'S IN THE NEWS?

What is Nuclear Medicine?

- Specialised Branch of Imaging: Nuclear medicine is a medical field that uses small amounts of radioactive substances, known as radiotracers, for diagnosis and treatment of various conditions.
- **Primary Applications:** It is especially useful for **cancers**, **thyroid disorders**, **cardiac problems**, and **bone-related diseases**, where early functional changes are more important than structural ones.

How Nuclear Medicine Works

- Administration of Radiotracer: A radioactive compound is either injected into a vein, swallowed, or inhaled.
- **Targeted Absorption:** The radiotracer travels through the bloodstream and gets absorbed by specific organs or tissues based on their biological activity.
- Imaging Mechanism: A gamma camera or PET scanner detects the radiation emitted from the tracer, creating functional images of the internal organs.
- **Dual Purpose:** It not only reveals structural abnormalities but also provides data on **organ function and metabolic activity**, enabling early detection of disease.

Commonly Used Radionuclides

- Technetium-99m (Tc-99m): Widely used for bone, kidney, heart, and thyroid imaging.
- **Iodine Isotopes:** Used specifically for thyroid-related scans and treatment.
- Gallium, Thallium, Xenon: Each has specific applications (e.g., gallium for inflammation/cancer, xenon for lung ventilation).

Common Types of Nuclear Medicine Scans

- Renal (Kidney) Scan: Evaluates kidney function, drainage, and blood supply.
- Thyroid Scan: Assesses thyroid gland size, shape, and functional activity; detects nodules or abnormal uptake patterns.
- Bone Scan: Helps in identifying stress fractures, metastasis, arthritis, or bone infections.
- Cardiac (Heart) Scan: Measures blood flow to the heart muscle, often used in coronary artery disease evaluation.

Understanding the Thyroid Gland

- Location & Shape: A butterfly-shaped gland located in front of the neck, just below the Adam's apple, sitting over the trachea.
- Endocrine Function: It produces hormones that regulate metabolism, energy production, heart rate, and body temperature.
- Key Hormones:
 - Triiodothyronine (T3)
 - Thyroxine (T4)

Common Thyroid Disorders

- **Hypothyroidism:** Underactive thyroid leading to fatigue, weight gain, and cold intolerance due to **low hormone production**.
- **Hyperthyroidism:** Overactive thyroid causing weight loss, anxiety, and rapid heartbeat due to **excess hormone secretion**.
- **Thyroid Cancer:** May require surgery followed by radioactive iodine treatment to destroy remaining cancerous tissue.
- **Goitre:** Visible or non-visible **enlargement** of the thyroid gland, sometimes linked to iodine deficiency.

Importance of Iodine

- Essential Micronutrient: Critical for the production of thyroid hormones.
- Daily Requirement:
 - o **Adults:** ∼150 micrograms/day
 - o **Children:** ~120 micrograms/day
 - o **Pregnant/Lactating Women:** ~300 micrograms/day
- **Iodine Storage:** The thyroid gland stores more than 80% of the body's iodine.
- WHO Definition: Iodine deficiency is diagnosed when urinary iodine levels fall below 100 μg/L.

Development of Radioactive Iodine (RAI) Therapy

- Early Research: Concept proposed in the 1930s for therapeutic applications.
- **Pioneered by Saul Hertz** at Massachusetts General Hospital, who applied it in treating thyroid diseases.
- **Iodine-131:** A radioisotope that emits both **gamma rays** (for imaging) and **beta particles** (for tissue destruction).

Radioactive Iodine Isotopes

- **Stable Isotope:** Iodine-127 (naturally occurring and non-radioactive).
- Radioactive Isotopes: Over 40 artificially produced isotopes, mainly via nuclear reactors or cyclotrons.
- Medically Significant Ones:
 - **Iodine-123:** Ideal for imaging.
 - **Iodine-124:** Used in PET imaging.
 - **Iodine-125:** Used in brachytherapy.
 - **Iodine-131:** Used for both imaging and treatment; discovered in 1938; has an **8-day** half-life.

Therapeutic Uses of RAI in Thyroid Disorders

a. Hyperthyroidism

- Indications: Toxic goitre, Graves' disease, or hyperactive thyroid nodules.
- Mode of Use: Taken orally as a capsule or liquid, it is selectively taken up by the overactive thyroid tissue.
- Effect: Destroys overactive cells with beta radiation, bringing hormone levels to normal.

b. Thyroid Cancer

- **Post-Surgical Application:** After thyroidectomy, small doses are used for **whole-body** scans to detect residual cancer cells.
- **High-Dose Treatment:** Larger doses of Iodine-131 are given to **ablate remaining thyroid tissue** or to treat **metastatic thyroid cancers**.
- Theranostics: A combined approach where the same radioactive compound is used for both diagnosis (gamma rays) and therapy (beta particles).

Radioactive Iodine Therapy in India

a. Diagnosis

• **Technetium-99m:** Used for thyroid scans to assess benign conditions; chosen for its **short** half-life and low radiation risk.

b. Treatment

• **Iodine-131:** Administered under strict clinical settings to treat hyperthyroidism and thyroid cancers.

c. Safety and Protocols

- **Isolation Post-Treatment:** Patients are kept in specialized radiation-safe rooms to minimize exposure to others.
- **Safety Guidelines:** Patients receive clear instructions on radiation hygiene and precautions after discharge.

d. Pregnancy and Breastfeeding Restrictions

- Contraindicated: Treatment is strictly not permitted during pregnancy or lactation due to potential harm to the fetus or infant.
- **Precaution:** Mandatory pregnancy tests for women of childbearing age prior to administration.

e. Side Effects

- Mild & Temporary: Include dry mouth, neck tenderness, or slight swelling.
- Hydration & Monitoring: Patients are advised to drink fluids and are monitored every 6–8 weeks after therapy.

Significance of Radioactive Iodine Therapy (RAI)

• Non-Surgical Option: Offers a less invasive alternative to surgery for treating certain thyroid conditions.

- **Highly Effective:** Proven success in managing both **benign and malignant thyroid disorders**.
- Supports Personalised Medicine: Fits into modern approaches where treatment is tailored to individual functional and biological parameters.