RISING BLACK CARBON HEATING HIMALAYAN SNOW - ENVIRONEMNT

NEWS: A study by **Climate Trends** shows **rising black carbon (BC) levels** in the Himalayas are **accelerating snow surface heating**, with serious implications for **glacier melt and downstream water security**.

• The Himalayas, often termed the **"Third Pole"**, are crucial for **water security, glacial stability, and climate balance across South Asia.**

WHAT'S IN THE NEWS?

Warming Snow Surfaces

- Rising Snow Surface Temperatures:
 - Between 2000 and 2009, the average snow surface temperature in the Himalayas was around -11.27°C.
 - This temperature increased significantly to -7.13°C between 2020 and 2023, indicating clear warming trends on snow-covered regions.
 - This warming is mainly due to **climate change**, which affects high-altitude and snow-covered areas more rapidly than lowlands.
- Geographical Variations in Snow Warming:
 - The Eastern Himalayas experienced the highest increase in snow surface temperatures.
 - The **Central Himalayas** followed, and the **Western Himalayas** were relatively cooler.
 - These variations may be influenced by differences in altitude, exposure to moisture-laden winds, solar radiation, and anthropogenic emissions.

Glacier and Water Security Impact

- Threat to Glaciers:
 - The accelerated **melting of glaciers** is a direct consequence of rising snow surface temperatures.
 - This melt leads to a **reduction in glacier volume**, threatening the long-term existence of many Himalayan glaciers.
- Impact on Downstream Populations:

- Nearly 2 billion people who live downstream in South and Southeast Asia depend on the Himalayan glaciers for freshwater.
- These glaciers feed major river systems like the Ganges, Brahmaputra, and Indus, which are vital for drinking water, irrigation, hydropower, and ecosystem balance.
- Shortening of Snow Season:
 - The onset of snowmelt is occurring earlier each year.
 - The duration of snow cover is reducing, affecting water availability during the dry season, especially for agriculture.
- Broad Impacts:
 - This altered snow and melt pattern affects **river flows**, disrupts **agriculture calendars**, and endangers **ecosystems and biodiversity** that rely on predictable seasonal changes.

Snow Depth Paradox

- Increase in Snow Depth:
 - Despite overall warming, the average snow depth rose from 0.059 meters (2000–2009) to 0.117 meters (2020–2023).
 - This paradox challenges the usual expectation that rising temperatures reduce snow cover.
- Reasons for Increased Snow Depth:
 - Increased Snowfall: Warmer air holds more moisture, which can lead to more intense snowfall, especially during specific cold spells.
 - Shift in Seasonal Precipitation: Changes in the timing and type of precipitation (more snow instead of rain in colder months) can contribute to thicker snow layers.
 - Wind Redistribution: Strong winds can blow and pile up snow unevenly across the landscape, leading to deeper accumulations in some regions.
- Regional Observation:
 - The Western Himalayas exhibited the greatest snow depths.
 - This is because the region is **higher in elevation**, and is more **frequently exposed to Western Disturbances**—weather systems that bring **intense winter precipitation** in the form of snow.

Black Carbon as Catalyst to Global Warming

- Nature of Black Carbon (BC):
 - Black Carbon is a short-lived but highly potent climate pollutant.
 - It is produced through **incomplete combustion** of biomass and fossil fuels, including **wood**, **coal**, **diesel**, **and agricultural waste**.
- Effect on Climate and Snow:
 - Unlike other aerosols (e.g., sulfate aerosols) that reflect sunlight and cool the atmosphere, BC absorbs solar radiation.
 - When BC settles on snow and ice, it **reduces albedo** (reflectivity), meaning snow **absorbs more heat**, accelerating **melting**.
 - This contributes to surface warming and alters the hydrological cycle, leading to unpredictable water availability and flooding risks.

BROWN CARBON Organic molecules like tar balls or fats, given off by long-smoldering fires

BLACK CARBON Carbon particles given off by hot fires, like coal plants, forest fires, and combustion from cars

Sources of Black Carbon

- Geographic Hotspot:
 - The Indo-Gangetic Plain, stretching across northern India, Pakistan, Nepal, and Bangladesh, is one of the world's most polluted regions and a major BC hotspot.
 - This region lies just south of the Himalayas, making it particularly influential in transporting pollutants to glacier zones.

- Major BC Sources:
 - **Biomass Burning**: Includes burning of firewood, cow dung, crop residues, and forest biomass for heating and cooking.
 - Fossil Fuel Combustion: Emissions from vehicles, industries, and coal-based power plants contribute significantly to BC.
 - Forest and Agricultural Fires: Seasonal stubble burning and wildfires release large quantities of BC into the atmosphere.
 - **Biofuels**: Use of traditional cooking fuels like **kerosene**, **wood**, **and dung cakes** in rural areas is a major BC source.
- India's BC Emission Profile:
 - It is estimated that **biofuel use alone contributes around 42%** of **India's total black carbon emissions**.
 - This highlights the urgent need for **clean cooking energy transitions** to reduce BC levels and mitigate climate impacts.

Source: https://www.thehindu.com/sci-tech/energy-and-environment/rising-black-carbon-heatinghimalayan-snow-study/article69638446.ece