REGENERATIVE BREAKING SYSTEM: SCIENCE & TECHNOLOGY

NEWS: Siemens delivers India's first 9000 HP electric locomotive for long-haul freight trains

WHAT'S IN THE NEWS?

India launched its first 9000 HP electric freight locomotive with regenerative braking in Dahod, Gujarat, marking a major step in sustainable rail logistics. The engine can recover braking energy as electricity, boosting energy efficiency, reducing emissions, and lowering operational costs.

India's First 9000 HP Electric Freight Locomotive

Launch Details:

- Location: Dahod, Gujarat
- Collaboration: Built in partnership with German engineering giant Siemens
- Significance: Represents a technological milestone in India's rail freight infrastructure

Key Features of the Dahod-9000 Electric Engine:

- Horsepower: 9000 HP one of the most powerful electric freight locomotives in India
- Haulage Capacity: Can haul up to 5800 tonnes
- Regenerative Braking: Capable of converting braking energy into usable electricity
- Design Configuration: Six-axle locomotive
- Speed:
 - Average speed: 75 km/h
 - Maximum speed: 120 km/h
- Noise and Vibration: Designed for silent operation with minimal vibrations
- Environmental Impact:
 - Zero emissions during operation
 - Supports India's goals of sustainable and green transport

Advantages:

- Cost-effective and high-quality engineering
- Boosts export potential of Indian rail technology
- Promotes efficient freight logistics
- Reduces dependence on diesel engines

• Lowers carbon footprint and enhances energy efficiency

What is a Regenerative Braking System (RBS)?

Definition:

- A braking technology used in electric and hybrid vehicles/locomotives that recovers the vehicle's kinetic energy during braking.
- Converts energy that is normally lost as **heat** into **electrical energy**, which is then **stored and reused**.

How Regenerative Braking Works:

1. Kinetic Energy Conversion

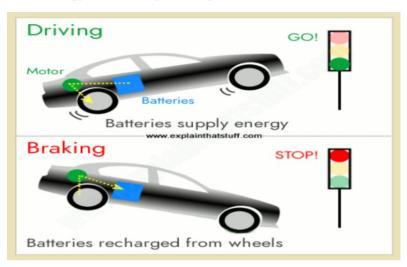
- As the vehicle moves, it accumulates **kinetic energy**.
- When brakes are applied, this energy needs to be reduced to slow the vehicle.

2. Motor Acts as Generator

- The electric motor reverses its function, working as a generator.
- It slows down the wheels while converting kinetic energy into electrical energy.

3. Energy Storage

- The generated electricity is sent to:
 - The vehicle's **battery**, or
 - A supercapacitor.
- This energy is stored for **later reuse**.


4. Energy Reuse

- The stored energy can be used to:
 - **Power the vehicle** again during acceleration
 - Reduce external electricity draw, increasing overall efficiency.

Benefits of Regenerative Braking

1. Improved Energy Efficiency

• Reduces energy loss during braking.

• Enhances the vehicle's overall efficiency and performance.

2. Lower Emissions

- Promotes eco-friendly transport by minimising energy wastage.
- Useful in reducing the railway sector's carbon emissions.

3. Reduced Brake Wear

- Decreases reliance on friction-based braking systems.
- Leads to lower maintenance costs and longer brake life.

Limitations of Regenerative Braking

1. Reduced Effectiveness at Low Speeds

- As **vehicle speed drops**, so does **kinetic energy**, reducing the amount of recoverable energy.
- Energy recovery is least effective at very low speeds.

2. Incomplete Braking Capability

- RBS cannot fully stop the vehicle in most cases.
- Must be used in **conjunction with traditional friction brakes** for complete halts and emergencies.

Conclusion

The **Dahod 9000 HP electric locomotive** marks a significant advancement in India's journey towards **modern**, **efficient**, **and green transportation systems**. Equipped with **regenerative braking**, it sets a benchmark in combining **heavy-duty haulage** with **energy conservation**, contributing to **sustainable rail logistics**.

Source: <u>https://www.thehindu.com/business/siemens-delivers-indias-first-9000-hp-electric-locomotive-for-long-haul-freight-trains/article69621439.ece</u>