2D METALS

NEWS: Scientists in China have successfully created atomically thin 2D metals like bismuth and tin, potentially enabling breakthroughs in advanced electronics and quantum technologies.

WHAT'S IN THE NEWS?

What are 2D Metals?

- Definition: 2D metals are materials composed of one or a few atomic layers of metal atoms, exhibiting unique properties that differ significantly from their bulk (3D) counterparts.
- Dimensionality Challenge: Unlike non-metallic 2D materials (like graphene), metals naturally tend to form strong 3D bonds, making the synthesis of 2D metallic forms particularly difficult.
- Example: 2D graphene is a well-known carbon-based 2D material, but 2D metals are still an emerging frontier.

Synthesis of 2D Metals

- Sapphire-MoS₂ Sandwich Technique: Scientists have successfully synthesized 2D metal sheets by confining metal atoms between a layer of sapphire and MoS₂ under high pressure.
- Thickness Achieved: This method enabled the creation of 2D metallic layers as thin as 6.3 Ångströms, which corresponds to approximately two atomic layers.
- Scalability Prospects: This method uses readily available materials and operates under moderate pressure conditions, making it a promising route for industrial-scale fabrication.

Understanding Ångström (Å)

 Definition: Ångström is a unit of length equal to 10⁻¹⁰ meters or 0.1 nanometers. Relevance: It is widely used in crystallography, spectroscopy, and nanotechnology to denote atomic-scale distances such as bond lengths and interatomic spacings.

Unique Properties of 2D Metals

- Quantum Confinement Effects: Electrons in 2D metals are restricted to two dimensions, leading to dramatic changes in their electrical, magnetic, and optical behaviors.
- Strong Field Effects: Metals like 2D bismuth exhibit a pronounced field effect and nonlinear Hall effect, not present in their 3D versions.
- Topological Behavior: Certain 2D metals (e.g., tin, bismuth) behave as topological insulators, meaning they conduct electricity only along their edges under specific conditions.

Potential Applications of 2D Metals

A. Quantum Computing

- Edge-State Conduction: Topological insulators derived from 2D metals enable fault-tolerant quantum states, which are ideal for stable quantum computing.
- Magnetized Electron Islands: Formation of magnetic domains at atomic scales supports future spintronic and quantum memory technologies.

B. Next-Generation Batteries

- High Electrical Conductivity: 2D metals offer faster electron transport, boosting electrode performance.
- Enhanced Surface Area: Their large surface-to-volume ratio facilitates better ion exchange and energy density.
- Lightweight Design: Their atomic thinness reduces material weight while improving battery efficiency.

C. Ultra-Sensitive Sensors

• Chemical Sensitivity: Due to quantum confinement, 2D metals can detect very small changes in chemical or biological environments.

• Field-Tunability: Their electrical behavior can be adjusted by external fields, enabling smart, adaptive sensor systems.

Role of Nanotechnology in Enabling 2D Materials

- A. 2D Graphene
 - Structure: Single layer of sp²-bonded carbon atoms arranged in a hexagonal lattice.
 - Properties:
 - Extremely high electrical and thermal conductivity
 - Exceptional mechanical strength (200× stronger than steel)
 - Nearly transparent
 - Applications:
 - Flexible electronics, transparent sensors
 - Energy storage devices (batteries, supercapacitors)
 - Water purification membranes
 - Biomedical tools like drug delivery and bio-imaging
- B. 2D MoS₂ (Molybdenum Disulfide)
 - Structure: A molybdenum layer sandwiched between two sulfur layers.
 - Properties:
 - Acts as a semiconductor with a direct band gap (~1.8 eV)
 - Flexible and exhibits high on/off ratio in transistors
 - Applications:
 - Field-effect transistors (FETs)
 - Photodetectors, light-emitting diodes (LEDs)
 - Hydrogen evolution reaction (HER) catalysts
 - Nanoscale lubricants due to low surface friction

Strategic Importance of 2D Metals

- Innovation Platform: 2D metals are at the intersection of quantum physics, materials science, and nanotechnology, enabling novel device architectures.
- Material Integration: They are compatible with other 2D materials like MoS₂ and boron nitride, making them suitable for nanoscale electronic circuits.
- Scalable Manufacturing: Recent fabrication methods, especially from China, show promise for large-scale production, using accessible tools and materials.

Global R&D Landscape and India's Role

- Global Leaders: Countries like China and the United States are investing heavily in scalable fabrication techniques and applications of 2D metals.
- India's Present Strength:
 - Robust academic and research capabilities in graphene, MoS₂, and other 2D materials.
 - However, there is a gap in pioneering research on metallic 2D materials.
- Opportunity for India:
 - Leverage existing nanotech infrastructure and research talent.
 - Invest in the synthesis and application of 2D metals in strategic sectors like quantum tech, defense, and advanced electronics.
- Strategic Investment Need:
 - Emphasize funding quantum materials research.
 - Encourage international collaborations to gain expertise in 2D metal fabrication and commercialization.

Source: <u>https://www.thehindu.com/sci-tech/science/scientists-finally-make-</u> <u>strange-2d-metals-sought-for-future-technologies/article69574853.ece</u>