

EDITORIAL: THE HINDU

GENERAL STUDIES 3: DISASTER MANAGEMENT **TOPIC:** HEAT WAVES

DATE: 01.05.2025

The impact of suspending a water treaty

1. Context: Escalating Heatwaves and Policy Urgency

- Northern India is witnessing unprecedented heatwave patterns, with earlier onset, longer duration, and greater intensity.
- These shifts call for **urgent public policy responses** to protect **health**, **agriculture**, **infrastructure**, and overall **climate resilience**.

2. Current Trends: Rising Heat Events in 2024–2025

- Record-Breaking Temperatures:
 - In **2024**, temperatures in parts of **Delhi** reached **53°C**, among the highest ever recorded.
 - 2025 saw the earliest heatwave in history, beginning as early as February.
 - Cities like Delhi, Jaipur, Amritsar, and Chandigarh reported consistent highs above 40°C through March–April, triggering multiple IMD heat alerts.
- Changing Seasonal Patterns:
 - Winters are shrinking, and summers are beginning earlier.
 - Heatwaves are becoming more frequent and prolonged, with 2025 projections exceeding historical averages.

3. Underlying Causes of Intensifying Heatwaves

- Climate Change & Global Warming:
 - Rising **baseline global temperatures** have increased the probability of extreme heat events.
 - Weakening **western disturbances**, which previously brought cooling, now contribute to prolonged heat.
- Urbanization & Land Use Changes:
 - Cities like **Delhi and Chandigarh** face severe **urban heat island (UHI)** effects due to **concretization**, **reduced vegetation**, and **dense population**.

- Loss of green spaces and uncontrolled infrastructure expansion amplify temperature rise.
- Atmospheric and Meteorological Factors:
 - Clear skies and low wind speeds in pre-monsoon months allow intense solar radiation.
 - Sudden seasonal transition from winter to summer increases exposure to abrupt heatwaves.

4. Impacts of Intensifying Heatwaves

- Public Health Crisis:
 - Vulnerable groups children, elderly, outdoor workers, and people with health conditions face heightened risks.
 - In 2024, around 150 heat-related deaths were officially recorded, with independent estimates suggesting higher numbers.
 - Rise in heatstroke, dehydration, and worsening of chronic illnesses like heart and respiratory problems.
- Agricultural and Economic Losses:
 - Heat stress damages winter-sown crops (e.g., wheat), threatening food security and rural livelihoods.
 - Increases water stress and irrigation demand, worsening resource scarcity.
- Infrastructure Strain:
 - Peak heat periods drive up electricity usage for cooling, causing power grid overload and frequent outages.
 - Existing **urban infrastructure is not designed** for such temperature extremes, resulting in rapid **degradation**.

5. Current Policy Responses: Gaps and Limitations

- Reactive Measures:
 - Focus remains on **heatwave advisories and alerts**, rather than **long-term mitigation** or **resilience planning**.
 - Public advisories have **limited reach**, especially in rural and informal sectors.
- Inadequate Early Warning Systems:

MAKING YOU SERVE THE NATION

PL RAJ IAS & IPS ACADEMY

- Though **IMD forecasting** has improved, there's **insufficient integration** with **local governance** and **health systems**.
- Lack of **targeted emergency plans** for vulnerable groups.

6. Recommendations: Towards Proactive Public Policy

- Strengthen Early Warning and Integration:
 - Improve heatwave forecasting accuracy and ensure multi-channel dissemination (TV, mobile, radio).
 - Link forecasts with **municipal services**, **health departments**, and **disaster management systems**.
- Urban Planning and Green Infrastructure:
 - Promote **urban greening**, **tree plantation**, **rooftop gardens**, and **green belts** to combat UHI.
 - Enforce cool roofs, reflective pavements, and heat-resilient urban design in construction norms.
- Health Sector Preparedness:
 - Create Heat Action Plans for cities and states, particularly targeting slum dwellers, construction workers, and street vendors.
 - Train frontline health workers to diagnose and treat heat illnesses.
 - Ensure availability of **ORS packets**, medicines, ambulances, and cooling shelters.
- Water and Energy Resource Management:
 - Implement rainwater harvesting, drip irrigation, and smart water usage in agriculture.
 - Promote **energy efficiency**, and stagger power demand through **demand-side management** during heat spikes.
- Public Awareness and Community Engagement:
 - Run targeted campaigns on heat safety, hydration, and first aid.
 - Involve **local communities, NGOs, and traditional leaders** in disseminating preventive strategies.
- Climate Change Mitigation and Adaptation:

- Shift to renewable energy sources to reduce greenhouse emissions.
- Mainstream climate resilience into urban planning, housing, employment, and rural development policies.

7. Conclusion: A Call for Integrated Climate Resilience

- The escalating heatwaves in North India are not just meteorological phenomena but early warnings of climate breakdown.
- Addressing this crisis requires **proactive**, **multi-sectoral**, and **long-term interventions** that combine **climate adaptation**, **health protection**, and **urban resilience**.
- India must urgently transition from reactive response to anticipatory planning, aligning policies across health, agriculture, energy, and infrastructure.

Source: https://www.thehindu.com/opinion/op-ed/the-impact-of-suspending-a-watertreaty/article69510612.ece

