BULLSEYE GALAXY – SCIENCE & TECHNOLOGY

NEWS: Astronomers have discovered a unique galaxy, named the **Bullseye Galaxy (LEDA 1313424)**, that contains **nine concentric rings** — more than any previously known ring galaxy.

WHAT'S IN THE NEWS?

This rare celestial structure was observed using the **Hubble Space Telescope** and the **W.M. Keck Observatory in Hawaii**. Researchers believe this galaxy may also offer valuable insights into the formation of giant low surface brightness (GLSB) galaxies, which are crucial to understanding dark matter in the universe.

Introduction to the Bullseye Galaxy (LEDA 1313424)

- Identification: Known scientifically as LEDA 1313424, the galaxy is nicknamed the *Bullseye Galaxy* due to its prominent ring-like appearance.
- Size: It spans approximately 250,000 light-years in diameter, making it about five times larger than the Milky Way galaxy.
- **Rarity**: The galaxy is considered an *uncommon and transitional structure*, captured during a fleeting stage of galactic evolution.

Unique Multi-Ring Structure

- Number of Rings: The Bullseye Galaxy contains nine distinct concentric rings, far exceeding the usual two or three rings observed in most known ring galaxies.
- **Significance**: The presence of so many rings is extremely rare and provides astronomers with valuable insights into galactic dynamics following collisions.

Origin of the Rings: Head-On Galactic Collision

- **Collision Event**: Approximately **50 million years ago**, a **blue dwarf galaxy** collided head-on with the Bullseye Galaxy, passing directly through its center.
- Impact Mechanism: The gravitational disturbance from the collision triggered radial ripples in the gas content of the Bullseye Galaxy.
- Star Formation: These ripples compressed the gas, igniting bursts of star formation along the circular fronts, resulting in the formation of concentric rings.
- **Current Evidence**: A **gas trail still connects** the Bullseye Galaxy and the blue dwarf, which are now separated by **130,000 light-years**, supporting the collision theory.

Mechanism of Ring Formation

- Stellar Orbits: The original orbits of existing stars remained unaffected by the collision, as stars are not as easily influenced as gas.
- Gas Dynamics: The gas and newly formed star clusters reorganized into wave-like patterns, which settled into ring formations.
- **Wave Propagation**: These rings act like ripples on a pond, moving outward from the point of collision in regular intervals.

Related Concepts: Low Surface Brightness (LSB) Galaxies

- **Definition**: LSB galaxies have **extremely faint disks**, making them difficult to detect with traditional optical surveys.
- Star Formation: Despite possessing large reserves of hydrogen gas, they show minimal visible star formation.
- Dark Matter: They are dominated by dark matter, making them key targets for studying dark matter distribution in the cosmos.
- Visibility Challenge: Their faintness often causes them to be overlooked in largescale galaxy surveys.

Giant Low Surface Brightness (GLSB) Galaxies

- Subclass Characteristics: GLSB galaxies are an especially massive type of LSB, with diffuse and extended stellar disks.
- Notable Example: *Malin 1* the largest known spiral galaxy is a GLSB that is about 6.5 times wider than the Milky Way.
- Environmental Isolation: These galaxies typically exist in isolation, located far from denser galaxy clusters.
- Black Hole Size: Despite their massive size, GLSBs often have relatively small central black holes, implying they are less evolved compared to other giant galaxies.