FLUE GAS DESULPHURISATION - ENVIRONMENT

NEWS: A study commissioned by the **Principal Scientific Adviser's Office** recommended **rolling back** the 2015 mandate requiring **Indian coal-fired plants** to install **Flue Gas Desulphurisation (FGD) systems.**

WHAT'S IN TH NEWS?

- The Ministry of Environment, Forest & Climate Change (MoEFCC) in 2015 mandated all of India's 537 coal-fired plants to install FGD systems to reduce sulphur dioxide (SO2) emissions.
- Under a 2022 notification, **penalties for non-compliance increase based on the delay in implementation.** The penalties are applied per unit of electricity, with higher charges for longer delays.

Rationale Behind Rolling Back the FGD Mandate

a. Low Sulphur Content in Indian Coal

- Data-backed Observation: According to studies by the National Institute of Advanced Studies (NIAS) and IIT-Delhi, about 92% of Indian coal contains only 0.3% to 0.5% sulphur.
- **Implication**: Since Indian coal is naturally low in sulphur, the need for Flue Gas Desulphurisation (FGD), which targets sulphur dioxide (SO₂) emissions, is significantly reduced.
- Conclusion: A blanket mandate for installing FGDs across all thermal power plants is seen as unnecessary and inefficient.

b. Environmental Trade-Offs

- Water and Power Consumption: FGDs require substantial freshwater and energy inputs to operate, increasing the environmental footprint of power generation.
- Greenhouse Gas Impact: Between 2025 and 2030, widespread use of FGDs could result in 69 million tonnes of additional CO₂ emissions, while removing only 17 million tonnes of SO₂.

• Net Impact: This trade-off makes climate change mitigation efforts counterproductive, as the CO₂ rise outweighs the SO₂ reduction.

c. Availability of Cost-Effective Alternatives

- Electrostatic Precipitators (ESPs): Devices like ESPs manufactured by BHEL can reduce particulate matter (PM) emissions by 99%.
- Cost Comparison: While FGDs cost ₹1.2 crore/MW, ESPs cost only ₹25 lakh/MW, making them nearly five times cheaper.
- **Pollution Prioritization**: Since particulate matter is a major pollutant in India, **ESPs** offer a more relevant and impactful solution.

About Flue Gas Desulphurisation (FGD)

a. Definition and Working Principle

- FGD Technology: FGD is a scrubbing process that removes sulphur dioxide (SO₂) from the flue gas of coal-fired plants using alkaline reagents like calcium or sodium compounds.
- Chemical Reaction: The alkaline slurry (often limestone mixed with water) reacts with SO₂ to form calcium sulphite or gypsum, preventing its release.

b. Effectiveness

• High SO₂ Removal: FGD systems can remove up to 95% of SO₂, making them highly efficient in SO₂-specific emission control.

c. Flue Gas Composition

- **Definition**: Flue gas, also known as **stack or exhaust gas**, is the byproduct of fuel combustion in power plants and other industrial settings.
- Pollutants in Flue Gas:
 - Particulate Matter (PM) or dust.
 - Sulphur Oxides (SOx) including SO₂.
 - Nitrogen Oxides (NOx).
 - Carbon Monoxide (CO).
 - Traces of heavy metals like mercury and gases like CO₂.

- **Dominant Pollutant: Nitrogen oxides often dominate** in untreated flue gas from Indian coal plants due to combustion characteristics.
- d. Environmental Impact of Untreated Flue Gas
 - Local and Regional Air Pollution: Continuous emission of untreated flue gas degrades air quality, contributing to respiratory diseases and environmental degradation.

e. FGD Process Overview

- Absorber Tower Mechanism: In a typical FGD system, unclean flue gas is sprayed with limestone slurry, which chemically reacts with SO₂.
- **Result**: The resulting compound is collected, and **cleaned flue gas is released** into the atmosphere.

Impact of Sulphur Dioxide on the Environment

a. Toxicity and Air Pollution

• Human and Ecological Hazard: SO₂ is a major air pollutant, known to cause respiratory issues, crop damage, and harm to animals.

b. Acid Rain Formation

- Chemical Reaction in Atmosphere: SO₂ reacts with water vapor in the air, forming sulphuric acid, which falls as acid rain.
- Effects of Acid Rain:
 - Forests: Damages foliage and weakens trees.
 - Aquatic Systems: Kills fish and aquatic insects by lowering pH of water bodies.
 - Soils: Leaches essential nutrients, reducing fertility.

c. Infrastructure and Cultural Damage

- Material Corrosion: Acid rain corrodes buildings, bridges, and metal structures.
- Heritage Sites at Risk: Accelerates weathering of monuments, statues, and historic stonework, leading to cultural loss.

Electrostatic Precipitators (ESPs) vs Flue Gas Desulphurisation (FGD)

Aspect	Electrostatic Precipitators (ESP)	Flue Gas Desulphurisation (FGD)
Primary Purpose	Targets particulate matter (PM) , especially fine dust.	Designed specifically to remove sulphur dioxide (SO ₂).
Cost of Installation	Approx. ₹25 lakh per MW – economical and scalable.	Approx. ₹1.2 crore per MW – very expensive.
Pollution Control Efficiency	Can eliminate up to 99% of PM , highly effective against visible pollution.	Removes up to 95% of SO ₂ , but limited effect on PM and other pollutants.
Resource Requirements	Consumes less water and power , reducing operational cost and environmental stress.	Requires substantial water and energy , increasing environmental and economic load .
Suitability for Indian Conditions	Ideal for Indian coal, which has high ash and low sulphur , making PM control more critical.	Less relevant, as Indian coal's low sulphur content makes SO ₂ less of a threat.

Source: <u>https://www.thehindu.com/sci-tech/energy-and-environment/study-funded-by-principal-scientific-adviser-recommends-end-to-environment-ministrys-order-on-de-sulphurising-coal-plants/article69461308.ece</u>