SOLAR EVAPORATOR – SCIENCE & TECHNOLOGY

NEWS: Researchers at IIT Bombay, developed a new graphene-based Dual-Sided Superhydrophobic Laser-Induced Graphene (DSLIG) evaporator.

• This innovation offers a consistent, efficient, and scalable **desalination solution** by mimicking the **lotus leaf effect**, and integrating **dual-mode heating (solar + electric)**.

WHAT'S IN THE NEWS?

Interfacial Solar Evaporation

- It is a water purification technique where only the surface layer of water is heated using a floating solar evaporator that absorbs sunlight directly.
- This method avoids heating the entire volume of water, thereby **minimizing energy consumption** and improving overall efficiency.
- Localized surface heating makes it ideal for off-grid desalination applications, especially in remote or resource-scarce regions.
- Due to the **reduced energy loss**, this technique achieves **higher thermal efficiency** than conventional bulk heating methods.

Lotus Leaf Effect

- The Lotus Leaf Effect refers to the natural superhydrophobic (extremely waterrepellent) property observed in lotus leaves.
- This effect causes water droplets to **roll off the surface**, carrying away dirt and contaminants leading to **self-cleaning behavior**.
- It is now widely replicated in engineered materials for **anti-wetting**, **self-cleaning**, **and corrosion-resistant technologies**.

Joule Heating (Resistive or Ohmic Heating)

- Joule Heating is the process of **converting electrical energy into heat energy** when an electric current flows through a **resistive material**.
- This principle is used as a **backup heating mechanism** in desalination technologies, especially when **solar radiation is insufficient**.

Challenges in Solar Desalination Technologies

- Intermittent Solar Energy: Variations due to weather, time of day, and cloud cover lead to unpredictable heating performance.
- Material Limitations: Some materials used in solar evaporators have low solar absorption, which affects thermal efficiency.

• Salt Crystallization: Salt deposits can form on the surface of evaporators, blocking water contact and reducing system effectiveness over time.

About DSLIG Evaporator Technology

- **DSLIG** stands for **Dual-Sided Superhydrophobic Laser-Induced Graphene** evaporator.
- It is a hybrid desalination technology that uses **interfacial solar heating** with **Joule heating backup**, ensuring operation even in poor sunlight.

Key Components:

- 1. **PVDF (Polyvinylidene Fluoride)**: Offers **superhydrophobicity on both sides**, mimicking the lotus leaf effect.
- 2. **PES (Polyether Sulfone)**: Provides **mechanical durability** and **flexibility**, making the evaporator long-lasting and robust.
- 3. Laser-Induced Graphene (LIG): Created by laser engraving on PVDF to form a graphene surface layer for enhanced solar absorption and heat conversion.

Working Mechanism of DSLIG

- Solar Heating Mode: The evaporator absorbs solar radiation and heats only the thin surface layer of water for efficient evaporation.
- Joule Heating Mode: During cloudy or low-light conditions, electrical heating takes over to maintain continuous operation.
- Superhydrophobic Surfaces: Both sides repel salt and water, preventing salt buildup, thus extending the lifecycle and efficiency of the device.

Benefits of DSLIG Technology

Feature	Advantage
Dual Heating	Works in all weather conditions with solar and electric modes .
Superhydrophobicity	Prevents salt fouling and water blockage, improving performance.
Eco-Friendly	Made from low-toxicity , recyclable materials with minimal carbon footprint.
Versatile	Suitable for high-salinity brine and industrial wastewater treatment .

Feature	Advantage
Scalable Design	Units can be stacked or networked to increase water output.
Cost-Effective	Uses affordable and durable polymers (PVDF and PES) for wider deployment.

Desalination Technologies: Classification

Desalination systems are broadly classified into two categories:

A. Thermal Desalination Techniques

• These methods involve heating saline water to produce vapor and then condensing it into freshwater, mimicking the natural water cycle.

Method	Description	Suitability / Advantage
Multi-Stage Flash (MSF)	Seawater is rapidly evaporated in multiple stages under decreasing pressure.	Common in oil-rich Gulf nations with surplus thermal energy.
Multiple Effect Distillation (MED)	Steam from one chamber is used to heat the next stage in a cascading manner.	More energy-efficient than MSF, operates at lower temperatures .
Vapour Compression (VC)	Mechanical or thermal compressors recycle vapor for heat recovery.	Compact and portable , ideal for small-scale desalination .

B. Membrane-Based Desalination Techniques

• These processes involve forcing water through semi-permeable membranes to filter out salts and impurities, often using pressure or electric potential.

Method	Description	Advantages / Suitability
Reverse Osmosis (RO)	High-pressure system that lets only water molecules pass through the membrane.	Most widely used globally ; known for energy efficiency .
Electrodialysis (ED)	Uses an electric field to separate ions via ion-selective membranes .	Best for brackish water , suitable where salinity is moderate .
Nanofiltration (NF)	Similar to RO but with larger pores ; removes divalent ions and organics.	Lower energy consumption , good for water softening .

Source: https://www.thehindu.com/sci-tech/science/iit-bombay-scientists-develop-lotus-leaf-like-solar-evaporators-for-salt-water-treatment/article69457561.ece