BACTERIA AGAINST PLASTIC: ENVIRONMENT

NEWS: The promises and problems of using bacteria to get rid of plastic

WHAT'S IN THE NEWS?

Scientists are developing bacteria, enzymes, and spore-based thermoplastics to tackle plastic waste, offering promising alternatives to traditional disposal methods. However, large-scale industrial adoption faces challenges in efficiency, cost, and regulatory approvals.

1. The Growing Plastic Waste Problem

- Persistent & Ubiquitous Pollution:
 - Plastics take **centuries to degrade**, accumulating in landfills, oceans, and ecosystems.
 - **Microplastics contaminate** food chains, water bodies, and even human tissues.
- Scale of the Crisis:
 - Since the 1950s, **8.3 billion tonnes** of plastic have been produced.
 - Around **4.9 billion tonnes remain in the environment** due to poor recycling and slow degradation.
 - **Recycling rates remain below 10%**, making alternative degradation methods crucial.

2. Enzyme-Based Plastic Degradation: Breakthroughs & Challenges Discovery of Plastic-Degrading Enzymes

- Key Enzyme: IsPETase (2016, Japan)
 - Found in *Ideonella sakaiensis* bacteria, breaks **PET** (Polyethylene Terephthalate) into monomers.
 - Limitations: Naturally slow process, requiring modifications for efficiency.
- Enzyme Engineering: Faster PET Breakdown
 - Scientists improved IsPETase to degrade 90% of PET within 17 hours.
 - Produces **reusable monomers** (terephthalic acid and ethylene glycol).

Challenges in Enzyme-Based Degradation

- Scalability Issues:
 - Large-scale enzyme production is costly.
 - Requires optimal conditions (temperature, pH) for high efficiency.
- Industrial Feasibility:
 - Need to integrate enzyme degradation into existing plastic waste management systems.

3. Microbial Plastic Degradation: Bacteria as Natural Recyclers How Bacteria Break Down Plastics

- Plastic as a Carbon Source:
 - Some bacteria metabolize plastics into CO₂, water, and biomass.
 - Example: Bacterium X-32 can degrade plastic in ~22 months.
- Microbial Degradation Process:
 - 1. Microbes attach to plastic surfaces and form biofilms.
 - 2. Enzymes break down polymer chains into smaller molecules.
 - 3. Microbes metabolize these molecules for energy.

Challenges in Microbial Plastic Degradation

- Slow Degradation Rate:
 - Natural breakdown takes months to years.
 - Requires genetic modification to enhance speed.
- Environmental Conditions:
 - Bacterial activity depends on temperature, oxygen levels, and moisture.

4. Spore-Based Biodegradable Plastics: A Smart Alternative Innovation by Harvard & Wyss Institute

- Bacillus subtilis spores embedded in plastics enhance durability and degradation.
- Mechanism:
 - Spores remain dormant under normal conditions.
 - In composting environments, they activate and accelerate breakdown.

Advantages & Challenges

- Advantages:
 - Reinforces plastic strength during usage.
 - Biodegrades efficiently in compost.
- Challenges:
 - Regulatory hurdles for food/consumer products.

• Cost of spore purification and scaling.

5. Industrial Adoption: Companies Leading the Way

Prominent Innovations

- Carbios (France): Developed an engineered enzyme breaking PET plastics in 10 hours.
- North Carolina Biomaterials Firms: Testing spore-based thermoplastics for commercial applications.

Challenges in Large-Scale Implementation

- Efficiency vs. Cost: Need for high degradation speed with minimal costs.
- **Industry Reluctance:** Businesses need financial incentives to shift from traditional plastic production.

6. The Road Ahead: Future Directions & Policy Support

Enhancing Enzymatic & Microbial Efficiency

- Genetic engineering to create high-speed, cost-effective plastic-degrading bacteria.
- Combining enzymatic and microbial approaches for maximum efficiency.

Government & Industry Collaboration

- Policy Incentives:
 - Tax breaks for biodegradable plastic manufacturers.
 - Bans/restrictions on non-recyclable plastics.
- Investment in R&D:
 - Funding large-scale trials for enzyme-based solutions.

Source: <u>https://www.thehindu.com/sci-tech/science/the-promises-and-problems-of-using-bacteria-to-get-rid-of-plastic/article69175500.ece</u>