

CRYPTOGRAPHY: SCIENCE & TECHNOLOGY

NEWS: Indian cryptography research gears up to face the quantum challenge

WHAT'S IN THE NEWS?

Cryptography ensures data security by transforming sensitive information into a format that unauthorized parties cannot decipher. Emerging fields like quantum communication and encryption address the growing challenges posed by advanced computational capabilities, including quantum computing.

Cryptography and Related Topics

Introduction to Cryptography

- 1. Definition and Purpose:
 - Cryptography transforms readable information (plain text) into an unreadable format (ciphertext).
 - It safeguards sensitive data from unauthorized access or tampering.

2. Historical Context:

- Julius Caesar Cipher: A substitution cipher where letters in the plaintext are shifted by a fixed number.
- Enigma Machine: Used during WWII to encode military communications.
- 3. Modern Applications:
 - Secure Communications: End-to-end encryption for messaging apps.
 - Internet Banking: Ensuring transaction safety.
 - Digital Identity Verification: Safeguarding personal credentials.

Core Concepts in Cryptography

- 1. Cryptography Types:
 - Symmetric Encryption: Single key shared for encryption and decryption.
 - Asymmetric Encryption: Public-private key pair for secure exchanges.
 - Hash Functions: One-way transformations ensuring data integrity.
- 2. Importance of Keys:

P.L. RAJ IAS & IPS ACADEMY | 1447/C, 3rd floor, 15th Main Road, Anna Nagar West, Chennai-40. Ph.No.044-42323192, 9445032221 Email: plrajmemorial@gmail.com Website: www.plrajiasacademy.com Telegram link: https://t.me/plrajias2006 YouTube: P L RAJ IAS & IPS ACADEMY

- Cryptographic systems revolve around secret keys that protect data.
- Modern methods use **one-way functions** to make encryption easy but decryption computationally infeasible without the key.

THREE TYPES OF CRYPTOGRAPHY

Cryptography uses mathematical computations (algorithms) to encrypt data, which is later decrypted by the recipient of the information.

Emerging Research Areas in Cryptography

1. **Homomorphic Encryption**:

- Enables computations on encrypted data without requiring decryption.
- Benefits sectors like healthcare, allowing privacy-preserving analysis of sensitive medical data.

2. Quantum-Resistant Cryptography:

- Designs algorithms immune to attacks by quantum computers.
- Addresses vulnerabilities in current encryption methods like RSA and ECC (Elliptic Curve Cryptography).

Quantum Communication and Encryption

- 1. Traditional Encryption Limitations:
 - Relies on classical bits (0s and 1s) transmitted through networks.
 - Vulnerable to interception by hackers who can copy and read the data undetected.

P.L. RAJ IAS & IPS ACADEMY | 1447/C, 3rd floor, 15th Main Road, Anna Nagar West, Chennai-40. Ph.No.044-42323192, 9445032221 Email: plrajmemorial@gmail.com Website: www.plrajiasacademy.com Telegram link: https://t.me/plrajias2006 YouTube: P L RAJ IAS & IPS ACADEMY

MAKING YOU SERVE THE NATION

2. Quantum Communication:

- Utilizes qubits in a **superposition state**, representing combinations of 0 and 1.
- Advantage: Any interception disturbs the quantum state, leaving clear evidence of tampering.
- 3. Quantum Key Distribution (QKD):
 - Employs photons to transmit encryption keys securely.
 - **No-Cloning Theorem:** Prevents duplication of quantum states, ensuring data integrity.
 - **Entanglement-Based Protocols:** Interception destroys superposition, making hacking detectable.

Challenges in Cryptography

- 1. **Quantum Computing Threats**:
 - Mature quantum computers could break widely used encryption systems like RSA.
 - Cryptosystems must evolve to remain secure against quantum attacks.

2. Technical and Cost Limitations:

- Quantum Decoherence: Qubits lose their state due to environmental interference.
- Infrastructure Costs: Maintaining qubits requires ultra-low temperatures or highvacuum conditions.

3. Scalability:

Large-scale implementation of quantum communication networks remains complex.

India's Advancements in Quantum Cryptography

- 1. National Quantum Mission (2023):
 - Establishes a research hub for quantum communication and cryptography.
 - Key Goals:
 - Satellite-based quantum communication over 2,000 km.
 - Multi-node quantum networks and secure inter-city communication.

2. Quantum Satellite Development:

P.L. RAJ IAS & IPS ACADEMY | 1447/C, 3rd floor, 15th Main Road, Anna Nagar West, Chennai-40. Ph.No.044-42323192, 9445032221 Email: plrajmemorial@gmail.com Website: www.plrajiasacademy.com Telegram link: https://t.me/plrajias2006 YouTube: P L RAJ IAS & IPS ACADEMY

- ISRO is developing ultra-secure quantum communication satellites to establish India's dominance in this field.
- 3. Research and Funding:
 - Government support for quantum-resistant cryptography and innovations like homomorphic encryption.

The Future of Cryptography

- 1. Data Security:
 - Encryption technologies will be crucial as data volumes grow in sectors like cloud storage and IoT.
- 2. Technological Innovations:
 - Research into error-correcting qubits and scalable quantum cryptography networks will address existing technical challenges.
- 3. Global Collaborations:
 - Partnerships with international institutions to enhance quantum research and adopt global standards.

Source: https://www.thehindu.com/sci-tech/science/indian-cryptography-research-gears-up-to-face-the-quantum-challenge/article69115334.ece