GREENLAND ICE SHEET MELTING: GEOGRAPHY

NEWS: How glacier ice algae accelerate Greenland ice sheet melting

WHAT'S IN THE NEWS?

Impact of Dark-Pigmented Microalgae on the Greenland Ice Sheet Melting Context

- A new study has discovered that dark-pigmented microalgae growing on the Greenland Ice Sheet are accelerating its melting.
- These algae are highly efficient in nutrient uptake, allowing them to rapidly colonize newly exposed ice surfaces, intensifying ice sheet darkening and melting rates.

Key Findings of the Study

1. Nutrient Efficiency of Microalgae

- Advanced single-cell imaging techniques were used to analyze the carbon, nitrogen, and phosphorus content of these glacier ice algae.
- The study found that **these algae can survive in extremely nutrient-poor environments** by:
 - Storing phosphorus internally, allowing them to persist in low-nutrient glacier conditions.
 - **Maintaining high carbon-to-nutrient ratios**, which enhances their survival and adaptation to extreme conditions.
- This indicates that the algae have evolved a highly efficient survival strategy, allowing them to thrive in one of the most hostile environments on Earth.

2. Self-Sufficiency in Nutrient Uptake

- Unlike many other organisms, these algae **do not require large amounts of external nutrients** to grow.
- This self-sufficiency allows them to spread rapidly, particularly as more bare ice is exposed due to melting.
- Since they do not rely on external nutrient input, they can **continuously expand their colonization** as ice sheets melt, further **accelerating the melting process**.

3. Impact on Ice Sheet Melting

- The dark pigmentation of these microalgae reduces the reflectivity (albedo) of the ice, causing it to absorb more heat.
- Increased heat absorption **leads to faster melting**, creating a **positive feedback loop** where:
 - ➤ More ice melts → More bare ice is exposed → More microalgae grow → More heat is absorbed → Even more melting occurs.
- This process significantly contributes to global sea-level rise by accelerating the rate of ice loss from Greenland.

Greenland Ice Sheet: An Overview

1. Geographic Significance

- The Greenland Ice Sheet is the largest glacier in the Northern Hemisphere, covering 80% of Greenland.
- It is the second-largest ice sheet in the world (after Antarctica) and spans 1.7 million square kilometers.
- 2. Contribution to Global Sea Level Rise
 - The melting of the Greenland Ice Sheet is **the largest contributor of freshwater to rising global sea levels**.
 - Scientists estimate that if the entire Greenland Ice Sheet melted, it could lead to a 7meter rise in global sea levels, causing:
 - Submergence of coastal cities and islands.
 - Increased coastal erosion and stronger storm surges.
 - Disruptions to ocean currents and global climate patterns.

Implications of the Study

• Reinforces the urgency of climate action as rising global temperatures accelerate ice sheet melting.

- **Highlights the role of biological factors (microalgae) in climate change**, beyond just atmospheric and oceanic warming.
- Calls for **further research into controlling microalgae growth**, potentially slowing down ice loss.
- Demonstrates how small ecological changes can have large-scale environmental impacts.

This study underlines how biological processes, combined with climate change, **exacerbate environmental challenges** and emphasizes the need for **global efforts to combat glacial melting and rising sea levels**.

Source: https://www.thehindu.com/sci-tech/how-glacier-ice-algae-accelerategreenland-ice-sheet-melting/article69247457.ece#:~:text=Premium,-Published%20%2D%20February%2022&text=A%20new%20study%20reveals%20th at,expanding%20areas%20of%20exposed%20ice.