

WILLOW QUANTUM CHIP – SCIENCE & TECHNOLOGY

NEWS: Google introduced its quantum computing chip, Willow, with 105 qubits. Sundar Pichai highlighted Willow's ability to exponentially reduce errors and solve long-standing computational challenges.

WHAT'S IN THE NEWS?

Overview of Willow Quantum Chip

- Introduction: Google unveiled its latest quantum computing chip, Willow, with 105 qubits.
- Announcement: Alphabet and Google CEO Sundar Pichai revealed Willow's development on social media platform X (formerly Twitter).
- Technological Milestone:
 - Willow achieves exponentially reduced error rates, overcoming a significant challenge in quantum computing.
 - It demonstrated the ability to solve a **benchmark computation in under five minutes**, a task that classical supercomputers would take an indefinite amount of time to process.

Basics of Quantum Computing

- **Definition of Qubit**:
 - A qubit (quantum bit) is the basic unit of information in quantum computing.
 - Unlike classical bits, which can represent either 0 or 1, qubits can represent both 0 and 1 simultaneously, enabling quantum computers to process multiple combinations at once.
- Quantum Advantage:
 - This characteristic allows quantum computers to outperform traditional systems in specific computational tasks, such as simulations and cryptography.

Potential Threat to Bitcoin Security

- Public-Key Cryptography Reliance:
 - Cryptocurrencies like Bitcoin use **elliptic curve cryptography (ECC)** to secure transactions and private keys.
 - ECC relies on the assumption that tasks like **factoring large integers or computing discrete logarithms** are computationally infeasible for traditional computers.
- Quantum Computing Threat:

P.L. RAJ IAS & IPS ACADEMY | 1447/C, 3rd floor, 15th Main Road, Anna Nagar West, Chennai-40. Ph.No.044-42323192, 9445032221 Email: plrajmemorial@gmail.com Website: www.plrajiasacademy.com Telegram link: https://t.me/plrajias2006 YouTube: P L RAJ IAS & IPS ACADEMY

MAKING YOU SERVE THE NATION

- Quantum algorithms, such as **Shor's algorithm**, could theoretically break ECC by performing these computations exponentially faster.
- Willow's reduced error rates and computational power bring attention to the future potential of quantum computers to disrupt ECC.

Our quantum computing roadmap

Our focus is to unlock the full potential of quantum computing by developing a large-scale computer capable of complex error-corrected computations. We're guided by a roadmap featuring six milestones that will lead us toward top-quality quantum ng hardware and software for meaningful applications.

Current Limitations of Willow in Decrypting Bitcoin

- **Estimated Requirements for Bitcoin Decryption:**
 - Experts estimate that decrypting Bitcoin would require approximately 13 million qubits, far exceeding Willow's current 105 qubits.
- **Expert Insights:**
 - Himanshu Maradiya, CIFDAQ:
 - Willow is an impressive innovation but remains light-years away from the computational capability needed to break Bitcoin's encryption.
 - Scaling and error correction are critical obstacles that still need to be addressed.
 - Utkarsh Tiwari, KoinBX:
 - Bitcoin's SHA-256 algorithm is designed to require over 1 million qubits for any realistic decryption attempt.
 - Willow's capabilities, though groundbreaking, are insufficient to pose a serious threat.
 - Balaji Srihari, CoinSwitch:
 - Willow's advancements are more focused on benchmark achievements rather than direct cryptographic attacks.

P.L. RAJ IAS & IPS ACADEMY | 1447/C, 3rd floor, 15th Main Road, Anna Nagar West, Chennai-40. Ph.No.044-42323192, 9445032221 Email: plrajmemorial@gmail.com Website: www.plrajiasacademy.com Telegram link: https://t.me/plrajias2006 YouTube: P L RAJ IAS & IPS ACADEMY

PL RAJ IAS & IPS ACADEMY MAKING YOU SERVE THE NATION

• Sathvik Vishwanath, Unocoin:

- Quantum computing's timeline to achieve decryption-capable power remains uncertain, with current developments not yet capable of compromising cryptographic methods.
- Mohammed Roshan Aslam, GoSats:
 - Future research in quantum computing might integrate sufficient computational power to challenge Bitcoin, but solutions such as **new cryptography methods** or blockchain upgrades would likely counteract these risks.

Broader Industry Implications

- Quantum-Resistant Cryptography:
 - The crypto industry is working on **quantum-resistant solutions** to address potential vulnerabilities posed by quantum computing.
 - Examples include post-quantum cryptographic algorithms and new encryption standards.
- Impact Beyond Cryptocurrency:
 - Financial systems and cybersecurity frameworks need to adapt to quantum advancements to ensure future-proofing.
 - Willow highlights the urgency for industries to anticipate the impact of quantum computing on sensitive data and encryption.

Applications and Potential of Willow

- Breakthrough for Science and Technology:
 - Beyond cryptography, Willow's computational power could revolutionize fields such as:
 - Climate Modeling: Simulating complex weather and environmental systems.
 - **Drug Discovery**: Accelerating the design and testing of new medicines.
- Significance of Error Correction:
 - Willow's reduced error rates address one of the most significant challenges in scaling quantum computing for practical applications.

Call to Action for Stakeholders

- Proactive Measures for Cryptography:
 - Developers and researchers must focus on evolving cryptographic practices to ensure security against future quantum threats.

P.L. RAJ IAS & IPS ACADEMY | 1447/C, 3rd floor, 15th Main Road, Anna Nagar West, Chennai-40. Ph.No.044-42323192, 9445032221 Email: plrajmemorial@gmail.com Website: www.plrajiasacademy.com Telegram link: https://t.me/plrajias2006 YouTube: P L RAJ IAS & IPS ACADEMY

- Innovations such as blockchain **hard forks** may be implemented but are not ideal long-term solutions.
- Collaborative Effort Required:
 - Both crypto and tech stakeholders need to work collaboratively to align advancements in encryption and computational technologies.

Conclusion

- No Immediate Risk to Bitcoin:
 - Willow's current capabilities, while remarkable, are not sufficient to compromise Bitcoin's cryptographic foundations.
 - The estimated computational power required to decrypt Bitcoin remains far beyond what Willow can achieve.
- Future Implications:
 - As quantum technology progresses, industries must stay vigilant and adaptive.
 - Willow's development is both a **technological breakthrough** and a reminder of the need to future-proof financial and cybersecurity systems.

Source: https://www.thehindu.com/sci-tech/technology/google-parent-alphabet-jumps-onquantum-chip-breakthrough/article68971740.ece

